Student n	iumber:	

2023

YEAR 12Trial
EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 10 minutes
- Working time 120 minutes
- Write using black or blue pen
- NESA approved calculators may be used
- A reference sheet is provided at the back of this paper

Total marks:

70

Section I - 10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section
- Answer multiple choice questions by completely colouring in the appropriate circle on the answer sheet provided

Section II - 60 marks

- Attempt questions 11 16 in the answer booklet provided
- Allow about 1 hour and 45 minutes for this section
- Start each question on a new page showing all relevant mathematical reasoning and/or calculations

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

Question 1 (1 mark)

Which of the following is the remainder when the polynomial $P(x) = (x+2)^3 + 2$ is divided by (x-2)?

- A. 2
- B. 66
- C. x 2
- D. x + 2

Question 2 (1 mark)

What is the value of $\lim_{x\to 0} \left(\frac{\sin\frac{1}{3}x}{2x} \right)$

- A. $\frac{1}{6}$
- B. $\frac{2}{3}$
- C. $\frac{3}{2}$
- D. 6

Question 3 (1 mark)

After t years the number N of individuals in a population is given by $N=400+100e^{-0.1t}$. What is the difference between the initial population size and the limiting population size?

- A. 100
- B. 300
- C. 400
- D. 500

Question 4 (1 mark)

What is the acute angle between the vectors $\mathbf{i} + 2\mathbf{j}$ and $4\mathbf{i} + 2\mathbf{j}$ correct to the nearest degree?

- A. 18^{o}
- B. 26^{o}
- C. 32^{o}
- D. 37°

Question 5 (1 mark)

A school committee consists of 8 members and a chairperson. The members are selected from 12 students. The chairperson is selected from 4 teachers. In how many ways could the committee be selected?

- A. ${}^{12}C_8 + {}^4C_1$
- B. $^{12}P_8 + ^4P_1$
- C. ${}^{12}C_8 \times {}^4C_1$
- D. ${}^{12}P_8 \times {}^4C_1$

Question 6 (1 mark)

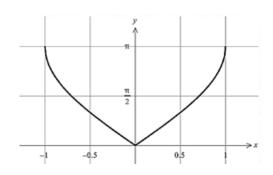
The vectors $\mathbf{p} = 4\mathbf{i} + (a+1)\mathbf{j}$ and $\mathbf{q} = a\mathbf{i} - 2\mathbf{j}$ are perpendicular. What is the value of a?

- A. -1
- B. 1
- C. $\frac{1}{3}$
- D. $-\frac{1}{3}$

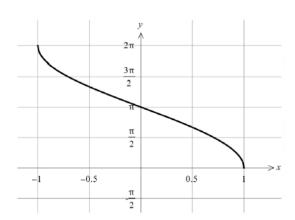
${\bf Question}~{\bf 7}~~(1~{\rm mark})$

Which graph best represents $y = |2cos^{-1}x - \pi|$?

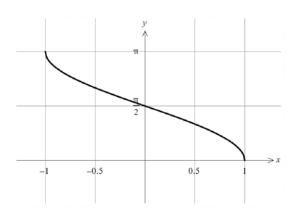
A.



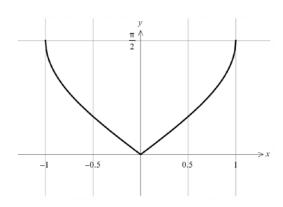
В.



С.



D.



Question 8 (1 mark)

A vertical tower AO of height h metres stands with its base A on horizontal ground. A stone is projected horizontally from the top O of the tower with speed Vms^{-1} . The stone moves in a vertical plane under gravity where the acceleration due to gravity is gms^{-2} . At time t seconds its position vector relative to O is $\underline{\mathbf{r}}(t) = (Vt)\underline{\mathbf{i}} - \left(\frac{1}{2}gt^2\right)\underline{\mathbf{j}}$. The stone hits the ground at an angle of 45^o to the horizontal. What is the time of the impact?

- A. $\frac{V}{2g}$ seconds
- B. $\frac{V}{g}$ seconds
- C. $\frac{2V}{g}$ seconds
- D. $\frac{4V}{g}$ seconds

Question 9 (1 mark)

g(x) is the inverse function of $f(x) = e^{x-1}$. Which one of these statements must be true for all x in the domain of g(x)?

- A. g(x) > 0
- B. g(x) < 0
- C. g''(x) < 0
- D. g'(x) < 0

Question 10 (1 mark)

 $\sin(3x+x) - \sin(3x-x) =$

- A. $-2\sin 3x\sin x$
- B. $2\cos 3x\sin x$
- C. $2\cos 3x\cos x$
- D. $2\sin 3x \sin x$

Section II

60 marks

Attempt Questions 11-16

Allow about 1 hour and 45 minutes for this section

Answer each question on a separate page in the writing booklet.

Extra writing booklets are available

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (10 marks)

(a) Solve the inequality
$$\frac{2x-1}{x+2} > 1$$
 [3]

(b) Use the substitution
$$u = 6 - x$$
 to find the exact value of $\int_1^6 x\sqrt{6 - x} dx$ [3]

- (c) A group of 40 new Year 7 students is going to be randomly divided into two classes A and B of 20 students each. Four of the students, Anne, Ben, Carrie and David have been together in the same class since they started school and are close friends.
 - i. What is the probability that the four friends will be in the same class? [2]
 - ii. What is the probability that exactly three of the friends will be in the same class?

Question 12 (10 marks)

(a) Find the exact value of
$$\int_{\sqrt{2}}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx$$
 [3]

- (b) Find the cartesian equation for the curve with parametric equations [2] $x = 1 + 2\cos 2t$ and $y = 2 + 2\sin 2t$
- (c) Prove by principle of mathematical induction that $7^n 3^n$ is divisible by 4 [3] for $n \ge 1$.
- (d) Prove the identity $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$ [2]

Question 13 (11 marks)

(a) If
$$t = \tan \frac{x}{2}$$
, show that $\frac{1 + \cos x + \sin x}{1 - \cos x + \sin x} = \cot \frac{x}{2}$. [3]

- (b) Using t- formulae solve the equation $\sin \theta + \cos \theta = \frac{1}{2}$ for $[0, 2\pi]$. Answer in radians to 3 decimal places. [4]
- (c) i. Express $\cos x \sqrt{3} \sin x$ in the form $R \cos(x + \alpha)$, where α is an acute angle. [2]
 - ii. Hence, solve $\cos x \sqrt{3} \sin x = 1$ for $[-\pi, \pi]$ [2]

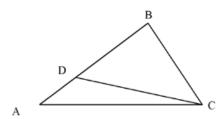
Question 14 (10 marks)

(a) If α , β and γ are roots of $x^3 - 5x^2 + 7x + 5 = 0$

i. Find
$$\alpha + \beta + \gamma$$
 [1]

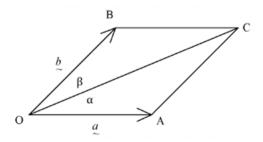
ii. Find
$$\alpha\beta + \beta\gamma + \gamma\alpha$$
 [1]

- (b) Given $\mathbf{u} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{v} = -2\mathbf{i} + 4\mathbf{j}$. Find $proj_{\mathbf{u}} \mathbf{v}$ [2]
- (c) In $\triangle ABC$, D is a point on AB, where $|\overrightarrow{AD}|: |\overrightarrow{DB}| = 2:3$ [2]



Given $\overrightarrow{AD} = \underline{a}$, $\overrightarrow{AC} = \underline{b}$ and $\overrightarrow{CB} = \underline{c}$. Show that $\underline{b} = \frac{1}{2}(5\underline{a} - 2\underline{c})$

(d) \overrightarrow{OACB} is rhombus. $\overrightarrow{OA} = \underline{a}, \overrightarrow{OB} = \underline{b}, \angle AOC = \alpha \text{ and } \angle COB = \beta.$



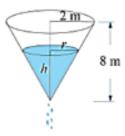
- i. For the vectors in the diagram above prove that $\underline{a}.(\underline{a} + \underline{b}) = \underline{b}.(\underline{a} + \underline{b})$ [2]
- ii. Hence, prove diagonal OC bisects $\angle AOB$. [2]

Question 15 (10 marks)

- (a) Jerry stands at the top of a building 30m tall and throws a ball with a velocity of $15ms^{-1}$ at an angle of 45^o above the horizontal. The ball eventually reaches the ground.
 - i. Derive the vector displacement of the ball in the form $\mathbf{g} = x\mathbf{i} + y\mathbf{j}$. You [3] may assume that $g = 10ms^{-2}$.
 - ii. Find the time taken for the ball to reach the ground. [1]
- (b) Consider the function $f(x) = \sin^{-1}(x-1)$.
 - i. Find the domain of the function. [1]
 - ii. Sketch the graph of the curve y = f(x) showing the endpoints and the x-intercept(s). [2]
 - iii. The region in the first quadrant bounded by the curve y = f(x) and the y-axis between the lines y = 0 and $y = \frac{\pi}{2}$ is rotated through one complete revolution about the y-axis. Find in simplest exact form the volume of the solid of revolution.

Question 16 (9 marks)

- (a) Find the constant term in the expression $\left(x + \frac{2}{x}\right)^6$ [3]
- (b) An inverted conical container is 8 metres deep and has a base radius of 2 metres. Water is leaking from the container at a constant rate of $\frac{dV}{dt} = 0.1 \text{ metres/hour, where } V \text{ is the volume of the water in the container.}$ Assume the container is full initially.



- i. Show that $V = \frac{\pi}{48}h^3$, where h is the height of the remaining water in the container. [1]
- ii. Hence, find the height of water in the container when $\frac{dh}{dt} = 0.02 \text{ metres/hour, correct to two decimal places.}$ [2]

Question 16 continued on next page...

Question 16 (continued)

(c) Newton's Law of cooling states that when an object at temperature T^o C is placed in an environment at temperature T_0^o , the rate of temperatre loss is given by the equation

$$\frac{dT}{dt} = k(T - T_o)$$

Where t is the time in seconds and k is a constant.

A packet of peas, initially at 24° C, is placed in a snap freeze refrigerator in which the internal temperature is maintained at -40° C.

- i. Show that $T = -40 + 64e^{kt}$ satisfies the cooling equation $\frac{dT}{dt} = k(T T_o)$. [1]
- ii. After 5 seconds, the temperature of the packet is 19°C. How long will it take for the temperature of the packet to reduce to 0°C?

End of paper

$$\begin{array}{lll}
\text{(1)} & p(x) = (x+2)^3 + 2 \\
\text{Rem} = p(2) = (2+2)^3 + 2 \\
&= 66
\end{array}$$
Ans. B.

$$\lim_{n \to 0} \left(\frac{\sin \left(\frac{1}{3} \pi \right)}{2\pi} \right)$$

$$= \frac{1}{6} \lim_{n \to 0} \left(\frac{\sin \frac{1}{3} \pi}{\frac{1}{3} \pi} \right)$$

$$= \frac{1}{6} \times 1$$

$$= \frac{1}{6}$$

$$\frac{1}{3} \times 1$$

3)
$$N = 400 + 100e^{-0.1t}$$

when $t = 0$
 $N = 500$

Ans. D

4 Acute angle between
$$\frac{1+2j}{2}$$
 and $4j+2j$

$$\cos \theta = \frac{4+4}{\sqrt{5} \times \sqrt{20}}$$

$$\cos\theta = \frac{8}{5x^2}$$

$$\begin{pmatrix} 4 \\ a+1 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ a+1 \end{pmatrix}$$
. $\begin{pmatrix} a \\ -2 \end{pmatrix} = 0$

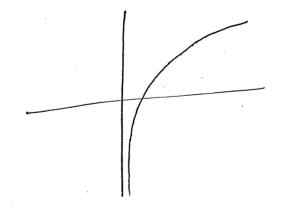
$$4a - 2(a+1) = 0$$

$$2a-2=0$$

when
$$\frac{\dot{y}}{\dot{x}} = -1$$

$$\frac{1}{\sqrt{y}} = -1$$

$$t = \frac{v}{g}$$
 seconds



Ans . C

Ans. B

Ans. B

Question 11

$$\frac{(2x-1)(x+2)^{2}}{(x+2)} > (x+2)^{2} \text{ and } x \neq -2$$

$$(2a-1)(2+2) 7 (2+2)^{2}$$

$$(2n-1)(n+2) - (n+2)^2 > 0$$

$$(n+2)$$
 { $(2n-1) - (n+2)$ } > 0

$$(2+2)(2-3) > 0$$

b) let
$$u = 6 - x$$
 Evaluate $\int x \sqrt{6 - x} dx$

$$\int x \sqrt{6 - x} dx$$

$$= -\int (6 - u) \sqrt{u} du$$

$$= \int (6 - u) \sqrt{u} du$$

$$= \int (6 - u) \sqrt{u} du$$

$$= \int (6 u)^{2} - u^{3/2} du$$

$$= \left[\frac{6x^{2}}{3} u^{3/2} - \frac{2}{5} u^{5/2} \right]^{5}$$

$$= 4x 5\sqrt{5} - \frac{2}{5} x 5^{\frac{1}{2}} \sqrt{5}$$

$$12\sqrt{6-2} \, dx$$
 $u=6-2$
 $du=-dx$
 $1imite:$
 $x=1=7u=5$
 $x=6=7u=0$

Question 11 - continued

(C), i, put 4 friends in class A, then need to Choose 16 more students from 36

could also be inclass B Probability all in same clan = 2x 40₂₀
3dp)

(i) put 3 friends in class A There 3 friends can be chosen in 4cg ways then we need to choose 17 more students from 36 (because 4th friend con't be in class A) Probability exactly 3 friends 4c3 x 36c17 in clax A 40020

could also be in class B Probability exactly 3 forende : 2 x 4c3 x 36 97 20.499 (3d.p) in same class

(a)
$$\sqrt{3}$$

$$\int \frac{1}{14-x^2} dx$$

$$= \left[\sin^{-1}\left(\frac{x}{2}\right)\right] \sqrt{2}$$

$$= \sin^{-1}\left(\frac{\sqrt{3}}{a}\right) - \sin^{-1}\left(\frac{1}{2}\right)$$

$$=\frac{1}{3}-\frac{1}{4}$$
12

(b)
$$\alpha = 1 + a \cos at$$
; $y = a + 2 \sin at$
 $\alpha - 1 = a \cos at$ $y - a = a \sin at$
 $\Rightarrow 0$

causing and adding eq (1) 4(2) $(x-1)^{2} + (y-2)^{2} = 4\cos^{2}2t + 4\sin^{2}2t$ $(x-1)^{2} + (y-2)^{2} = 4(\sin^{2}2t + \cos^{2}2t)$

 $(n-1)^{2} + (y-2)^{2} = 4 \text{ in the Cartesian}$ equation

Question 12 continued

- (E) let p(n) be the proposition that 7 -3" is divisible by 4 for n7,1
- > when n=1; LHS= 7'-3'=4
 - . p(n) is true when n=1
- -> Assume that p(n) is true when n=k i.e, assume that $7^{K}-3^{K}=4M$ where MEZ^{\dagger}
- -> Required to prove that P(n) is true when n= K+1 i.e prove that 7K+1-3K+1 = 4P, where PEZ+ $L \cdot H \cdot S = 7^{K+1} - 3^{K+1}$

$$=7(411)$$
 $=7(411)$
 $=7(411)$
 $=7(411)$
 $=7(411)$
 $=7(411)$
 $=7(411)$
 $=7(411)$

$$= 7 \times 4 M + 3 \times (1-3)$$

= $7 \times 4 M + 3 \times (1-3)$

$$=4(7M+3K)$$

: By principle of Mathematical induction if P(K) is line · p(K+1) is true

Question 12 - continued

Prove
$$\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$$

L.H.S = $\cos (2\theta + \theta)$

= $\cos (2\theta + \theta)$

= $\cos 2\theta \cos \theta - \sin \theta \sin \theta$

= $(2\cos^7 \theta - 1) \cos \theta - (2\sin \theta \cos \theta) \sin \theta$

= $a\cos^3 \theta - \cos \theta - a\sin^7 \theta \cos \theta$

= $a\cos^3 \theta - \cos \theta - a\cos \theta (1 - \cos^7 \theta)$

= $a\cos^3 \theta - \cos \theta - a\cos \theta (1 - \cos^7 \theta)$

 $= 4 \cos^3 \theta - 3 \cos \theta$

= R. H. s, as required

(a) If
$$t = tan \frac{\partial}{\partial x}$$

(1) Show that $1 + cos x + Sin x = cot \frac{x}{x}$
 $1 - cos x + Sin x$

$$1 + \cos x + \sin x = 1 + \frac{1 - t^2}{1 + t^2} + \frac{2t}{1 + t^2} \\
= (1 + t^2) + (1 - t^2) + 2t \\
\hline
1 + t^2$$

$$= 2(1 + t) \\
\hline
1 + t^2$$

$$\begin{aligned}
1 - \cos 2t & \sin 2t &= 1 - \frac{1 - t^2}{1 + t^2} + \frac{2t}{1 + t^2} \\
&= \left(1 + t^2\right) - \left(1 - t^2\right) + 2t \\
&= 2t \left(1 + t^2\right) \\
&= 2t \left(1 + t^2\right)
\end{aligned}$$

Hence
$$1+\cos x+\sin x = \frac{1}{t} = \cot \frac{x}{x}$$
.

O CO

Solve sin0 + cos0=
$$\frac{1}{2}$$
 for $[0,2\pi]$

$$\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} = \frac{1}{2}$$

$$\frac{1+2t-t^2}{1+t^2} = \frac{1}{2}$$

$$2(1+2t-t^2) = 1+t^2$$

$$t = 4 \pm \sqrt{16 + 4(3)(1)}$$

$$t = \frac{4 \pm \sqrt{28}}{6} = \frac{2 \pm 2\sqrt{7}}{3}$$

$$\tan \frac{\theta}{2} = \frac{2\pm\sqrt{7}}{3}, 0 \le \theta \le 2\pi; 0 \le \frac{\theta}{2} \le \pi$$

$$\frac{1}{2} = +an^{-1}\left(\frac{2\pm\sqrt{7}}{3}\right) = 0.997, \ T-8.212$$

Quistion 13 - Continued

 b_i , $\cos \alpha - \sqrt{3} \sin \alpha = R \cos(\alpha + \alpha)$

cosa- $\sqrt{3}$ sina = R cosa cosa - R sina sina Now companing L.H.S & R.H.S we can see that

R cos d = 1 and R sin $\alpha = \sqrt{3}$ $\downarrow \rightarrow 0$

Cavaring and adding eq (1) & (2) $R^2 \cos^2 x + R^2 \sin^2 x = 1+3$

R2 (sin d+ cord) = 4

R=4 =7 R=2 as R>D

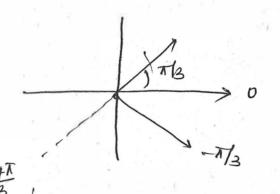
Since cos $a = \frac{1}{2}$ 70 and $\sin \alpha = \frac{\sqrt{3}}{2}$ 70

 α is in the 1 st Quadrant and $\alpha = \frac{\pi}{3}$

 $\cos \alpha - \sqrt{3} \sin \alpha = R \cos \left(\alpha + \frac{\Lambda}{3}\right)$

bill,
$$\cos x - \sqrt{3} \sin x = 1$$

$$\therefore \cos\left(2+\frac{1}{3}\right)=\frac{1}{2}$$



for [-1, x]

$$-T \le \alpha \le \overline{\Lambda}$$

$$\left(-\overline{\Lambda} + \overline{\frac{\Lambda}{3}}\right) \le \left(2 + \overline{\frac{\Lambda}{3}}\right) \le \left(\overline{\Lambda} + \overline{\frac{\Lambda}{3}}\right)$$

$$-\frac{2\pi}{3} \le \left(2 + \frac{\pi}{3}\right) \le \frac{4\pi}{3}$$

$$\cos\left(2+\frac{\pi}{3}\right)=\frac{1}{2}$$
 ; related a unite angle = $\frac{\pi}{3}$

(a)
$$d_1\beta$$
 and r are note of $x^3-5x^2+7x+5=0$

$$\begin{array}{ccc} (1, & \alpha + \beta + r & = -\frac{b}{a} \\ & = -\left(-\frac{5}{1}\right) \\ & = 5 \end{array}$$

ii,
$$\alpha\beta + \beta\gamma + \gamma d = \frac{c}{a}$$

$$= \frac{7}{1}$$

$$= 7$$

(b)
$$U = 2i + 3j$$
 and $V = -2i + 4j$

$$\frac{P_{\Lambda \theta j} V}{U} = \frac{U \cdot V}{|U|^{2}}, \quad U$$

$$= \frac{2(-2) + (3 \times 4)}{2^{2} + 3^{2}}, \quad \binom{2}{3}$$

$$= \frac{8}{13} \left(\frac{2}{3}\right) \text{ or } \frac{6}{13} \left(21 + 3j\right)$$

$$\overrightarrow{Ab} = Q$$

$$\frac{a}{a}$$

Show that
$$b = \frac{1}{2} (5a - 2c)$$

$$|\overrightarrow{DB}|$$
: $|\overrightarrow{AD}|$ = 3:2 and \overrightarrow{AD} = 9

$$\vec{DB} = \frac{3}{2} a$$

$$\overrightarrow{Ac} = \overrightarrow{Ab} + \overrightarrow{Bc}$$

$$b = \overrightarrow{AD} + \overrightarrow{DB} - \overrightarrow{CB}$$

$$= Q + \frac{3}{2} Q - C$$

Dij Prove diagonal oc bisecte LAOB. from (i, a. (a+b) = b. (2+b) 121. 12+ 5 | cosx = 15 | x | 2+ 5 | cos B 121 |2+6| cos d = 12/x/2+6/cosp cos d= cos \beta (Since |2|= |61) : OC bisects LAOB

$$\hat{Q}(i), \quad \dot{y} = -g$$

$$\dot{y} = \int -g \, dt$$

$$\dot{\hat{z}} = 0$$

$$\dot{x} = c_2$$

when
$$t=0$$
, $\dot{y}=15\sqrt{2}$
 $\frac{15\sqrt{2}}{2}=-9(0)+c_1$
 $\frac{15\sqrt{2}}{2}=-9(0)+c_1$
and $\dot{y}=-9t+15\sqrt{2}$

when
$$t=0$$
 $\dot{x}=\frac{15\sqrt{2}}{2}$
 $c^{1} C_{2}=\frac{15\sqrt{2}}{2}$ and $\dot{x}=\frac{15\sqrt{2}}{2}$

Displacement:

$$y = -\frac{1}{2}t + \frac{15\sqrt{2}}{2}t + \frac{15\sqrt{2}}{2}$$

$$x = \int \frac{15\sqrt{2}}{2} dt$$
 $x = \frac{15\sqrt{2}}{2} t + C_4$

when $t = 0$, $x = 0$
 $c_4 = 0$ and

 $c_4 = \frac{15\sqrt{2}}{2} t$

$$\therefore S = \left(\frac{15\sqrt{2}}{2} + \right) \frac{1}{2} + \left(-5t^2 + \frac{15\sqrt{2}}{2} + 30\right) \frac{1}{2}$$

dustion 15 - continued

aji, For the ball to reach the ground the component

$$-5t^{2} + \frac{15\sqrt{2}}{2}t + 30 = 0$$

$$t = \frac{-15\sqrt{2}}{2} \pm \sqrt{\frac{15\sqrt{2}}{2}^2 - 4(-5)(30)}$$

$$= \frac{-15\sqrt{2}}{2} + \sqrt{712.5}$$

Domain:
$$-1 \le (x-1) \le 1$$

 $0 \le x \le 2$

$$\frac{\pi}{2} \xrightarrow{y} \frac{(2\sqrt{2})}{2}$$

$$-\frac{\pi}{2} = \sin^{-1}(x-1)$$

(iii),
$$V = \pi \int_{0}^{\pi/2} (1 + \sin y)^{2} dy$$

$$= \pi \int_{0}^{\pi/2} (1 + 2 \sin y + \sin^{2} y) dy$$

$$= \pi \int_{0}^{\pi/2} (1 + 2 \sin y + \frac{1}{2} (1 - \cos 2y)) dy$$

$$= \pi \left[y - 2 \cos y + \frac{1}{2} y - \frac{1}{4} \sin 2y \right]_{0}^{\pi/2}$$

$$= \pi \left[\frac{3}{4} y - 2 \cos y - \frac{1}{4} \sin 2y \right]_{0}^{\pi/2}$$

$$= \pi \left[\left(\frac{3\pi}{4} - 0 - 0 \right) - \left(0 - 2 - 0 \right) \right]$$

$$= \pi \left(\frac{3\pi}{4} + 2 \right) \text{ Cubic units}$$

(a) constant turn in
$$\left(2 + \frac{2}{2}\right)^{6}$$

$$T_{k+1} = 6c_{k} x^{6-k} \left(\frac{2}{2}\right)^{k}$$

$$= 6c_{k} x^{2} x^{6-k} \left(\frac{1}{x^{k}}\right)$$

$$= 6c_{k} x^{2} x^{6-2k}$$

$$= 6c_{k} x^{2} x^{6-2k}$$

for the constant term:
$$6-2K=0$$

-'. $K=3$

Hence, the constant term is
$$6c_3 \times 2 = 160$$

(b) i, Using Similar triangles
$$\frac{2}{7} = \frac{8}{5}$$

$$V = \frac{1}{3} \pi \left(\frac{h}{4}\right)^2 h$$

(b) 11,
$$V = \frac{1}{48} h^3$$

$$\frac{dv}{dt} = \frac{dv}{dh} \times \frac{dh}{dt}$$

$$0.1 = \frac{d}{dh} \left(\frac{\overline{\Lambda}}{48} h^3 \right) \times 0.02$$

$$\frac{0.1}{0.02} = 3 \times \frac{\pi}{48} h^2$$

$$5 = \frac{\pi}{16} h^2$$

: h ~ 5.05 m

Cre

Ci, Substituting
$$T = -40 + 64e^{Kt}$$
 in $\frac{dT}{dt} = K(T - T_0)$
L.H.S. $\frac{dT}{dt}$

$$= \frac{d}{dt} (-40 + 64e^{Kt})$$

$$= 0 + 64 Ke^{Kt}$$

$$= K (64e^{Kt})$$

$$= K (T - (-40))$$

 $=K(T-T_0)$, $T_0=-40$

= RHS

$$e = \frac{59}{64}$$

$$5 K = In \left(\frac{59}{64} \right)$$

$$K=\frac{1}{5}$$
 In $\left(\frac{59}{64}\right)$

$$e^{Kt} = \frac{40}{64}$$

$$Kt = \ln\left(\frac{40}{64}\right)$$

$$t = \frac{1}{K} \left(\ln \left(\frac{40}{64} \right) \right)$$